LA, Permutations, and the Hajós Calculus

نویسنده

  • Michael Soltys
چکیده

LA is a simple and natural logical system for reasoning about matrices. We show that LA, over finite fields, proves a host of matrix identities (so called “hard matrix identities”) from the matrix form of the pigeonhole principle. LAP is LA with matrix powering; we show that LAP extended with quantification over permutations is strong enough to prove fundamental theorems of linear algebra (such as the Cayley-Hamilton Theorem). Furthermore, we show that LA with quantification over permutations expresses NP graph-theoretic properties, and proves the soundness of the Hajós Calculus. Several open problems are stated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complexity of the Hajós calculus for planar graphs

The planar Hajós calculus is the Hajós calculus with the restriction that all the graphs that appear in the construction (including a final graph) must be planar. We prove that the planar Hajós calculus is polynomially bounded iff the Hajós calculus is polynomially bounded.

متن کامل

A Propositional Proof System with Quantification Over Permutations

We introduce a new propositional proof system, which we call H, that allows quantification over permutations. In H we may write (∃ab)α and (∀ab)α, which is semantically equivalent to α(a, b) ∨ α(b, a) and α(a, b) ∧ α(b, a), respectively. We show that H with cuts restricted to Σ1 formulas (we denote this system H1) simulates efficiently the Hajós calculus (HC) for constructing graphs which are n...

متن کامل

Calcul Basique Des Permutations Signées , I : Longueur Et Nombre D'inversions ( * )

The traditional basic calculus on permutation statistic distributions is extended to the case of signed permutations. Résumé : Le calcul basique classique sur les distributions des statistiques de permutations est prolongé au cas des permutations signées. Sommaire 1. Permutations signées 1.1. Descentes 1.2. Nombre d’inversions et q-séries 1.3. Fonction génératrice du couple nombre de descentes-...

متن کامل

Exponential Lower Bounds for the Tree-Like Hajós Calculus

The Hajj os Calculus is a simple, nondeterministic procedure which generates precisely the class of non-3-colorable graphs. In this note, we prove exponential lower bounds on the size of tree-like Hajj os constructions .

متن کامل

Combinatorial specification of permutation classes †

This article presents a methodology that automatically derives a combinatorial specification for the permutation class C = Av(B), given its basis B of excluded patterns and the set of simple permutations in C, when these sets are both finite. This is achieved considering both pattern avoidance and pattern containment constraints in permutations. The obtained specification yields a system of equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 348  شماره 

صفحات  -

تاریخ انتشار 2004